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1 Introduction

The simplest and most familiar number associated to a mountain peak is the
elevation of its summit above sea level. However, absolute elevation often does
not correlate well with the visual impressiveness of a peak, which has more
to do with the amount of local relief and the steepness of the �anks of the
peak. For example, the summit of Mount Elbert, the highest point in the
Rocky Mountains, is 4401 meters above sea level[1], while Devils Thumb1 , a
striking rock spire on the border between Alaska and British Columbia, rises
only to 2767 meters[2]. Based on pure elevation, Elbert far surpasses Devils
Thumb. However, Mount Elbert rises from a high base in central Colorado, so
its local relief is not nearly as great as its elevation would indicate; nor is it a
particularly steep peak. For example, Elbert rises about 1600 meters (one mile)
over a horizontal distance of 6:5 kilometers on its southeast �ank2� which is not
unimpressive. However, the northwest face of Devils Thumb soars an amazing
2000 meters in 1:6 km, and it is similarly steep in other directions. To get 2000
meters of vertical relief from the summit of Mount Elbert, one has to go about
30 km away, to the town of Aspen; if one goes 30 km from Devils Thumb, one
gets to tidewater, yielding 2767 meters of relief. See Table 1 for representative
pro�les of the two peaks.
In this article we introduce a functional that takes into account the relief and

steepness of a peak in a mathematically elegant way, and which has substantial
correlation with the visual impressiveness of the peak. In fact, our functional
can be applied to any point on a landscape (not necessarily a summit� for
example, see the discussion below of the famous granite cli¤ of El Capitan in
Yosemite), or indeed, any point on the graph of a function. We will also brie�y
introduce two concepts derived from the main functional; one takes into account
how independent a particular feature is from nearby �better�features, and the
other calculates a kind of �ruggedness�for a domain.
A pedagogical note: using the basic de�nitions provides good exercises in

multivariable calculus, suitable for strong students in an introductory course.
Proving theorems about these measures involve good workouts with elementary
real and functional analysis.

1There is no apostrophe in the o¢ cial spelling of the name of this peak.
2One can verify these numbers using the public-domain mapping website map-

per.acme.com, among others.
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Table 1: Mount Elbert (left) and Devils Thumb (right) pro�les

2 Omnidirectional Relief and Steepness (ORS)

Let h : R2 ! R be a bounded, Lebesgue measurable function, thought of as
the height function of a landscape. (We do not require h to be continuous, to
permit the presence of vertical cli¤s.3) Consider a �xed base point p 2 R2, and
a corresponding reference point (p; h0). (It is theoretically useful, and no more
complicated, to let the height h0 of the reference point vary independently, so
h0 need not equal h(p). Physically, one can imagine, for example, h0 > h(p)
to be the height of the top of a �agpole placed atop a peak. However we will
primarily be interested in the case where h0 = h(p).) We will de�ne a functional
of this data, which we call omnidirectional relief and steepness (ORS), which
will capture a kind of average of the relief and steepness of the terrain as viewed
from the reference point.
More precisely, let h 2 L1

�
R2
�
, and let (p; h0) 2 R2�R. We will presently

de�ne ORS of the reference point (p; h0) relative to the landscape h, yielding a
functional

ORS : R2 � R� L1
�
R2
�
! R

(p; h0;h) 7! ORS (p; h0;h)

(In fact we will de�ne a whole family of possible functionals, but we will imme-
diately specialize to one particularly appealing case.)
We �rst consider a simple landscape, both to �x ideas and to de�ne an

important normalization for the general case.

De�nition 1 Let h0; b > 0, let s = h0=b, and let � = arctan s. Then the cone
3We could use S2 as the domain, to take into account the spherical nature of the Earth,

but we will see that all of the calculations localize strongly, making the di¤erence minuscule.
Generalizing everything in this paper to Rn is straightforward, but we use R2 throughout for
simplicity and because of the application to physical landscapes. However, we do not take
into account overhanging cli¤s, since that would vastly complicate the mathematical model.
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Figure 1: Cross-section of cone function with height 1 and slope 1

function c associated to h0, b is (in polar coordinates)

c(x) =

�
h0 � sr; r < b
0 r > b

(We suppress the dependence on h0; b for tidiness.) Note that s is the slope of
the cone, and � is the angle its sides make with the xy-plane.

See Figure 1 for the cross-section of the cone. We wish to de�ne the ORS
of the summit of this cone, i.e. ORS (0; h0; c). It should take into account its
height, and also its steepness. The combination h0s does not work, since it
is unbounded for large s, even if h0 is small. The combination h0� is just as
natural, and is bounded. We will actually choose 2

�h0� (�height times angle
over 90��), so that the limiting case � ! �=2, which we will call a �agpole,
yields simply h0. Hence we have the following.

De�nition 2 We say that ORS is angle-normalized if it yields 2
�h0� when

applied to the vertex of the cone with height h and angle �:4

ORS (0; h0; c) =
2

�
h0�

Note two further important features of the conical case: �rst, if two cone
functions c1; c2 share the same angle but have di¤erent heights h2 = Ah1, then
the ORS of c2 will be A times the ORS of c1. In other words, scaling up every
dimension (heights and horizontal distances) by a factor of A results in scaling
up ORS by the same factor. We will see below that this homogeneity, or scale-
covariance, property is true of ORS in general; in particular, it means that ORS
has meaningful units, namely, units of length. (In the topographic examples
below, ORS is given in meters.)

4We discuss other possible normalizations just after Theorem 5.
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Second, if we take a low-slope cone c with height h and base b >> h and
scale up h by a factor of A, leaving b unchanged, then the ORS will increase by
approximately A2. This low-slope quadratic behavior is also a general feature
of ORS.
Now we turn to the general case of a non-conical peak or other topographic

feature. We imagine standing at the reference point� say the summit of a
mountain� and looking down in all directions, gauging the impressiveness of the
view. We want to take some sort of average of the impressiveness information
obtained by looking in all directions. One can also think of stationing a host of
tourists (mathematically, these will be called sample points) everywhere around
the mountain, all looking up at the summit, and surveying them for their idea
of the impressiveness of the summit.5 Hence ORS will involve an integral over
the set of all sample points; we will denote a typical sample point by x, and we
will set r = kp� xk, the distance from the reference point to a sample point.
For every sample point x, we calculate the slope u(x) = (h0 � h(x)) =r. If

we integrated u itself, the integral over all x 2 R2 would clearly diverge for most
landscapes. Instead, we use an appropriate function to turn u into a sensible
integrand. We �rst present a general de�nition, using an arbitrary such function,
and then use the cone normalization to determine what function we desire.

De�nition 3 Let f : R! R be a continuous function with f(u) = 0 for u � 0.6
Let h 2 L1

�
R2
�
, and let (p; h0) 2 R2 � R. Let r = kx� pk be the radial

coordinate based at p, and let u(x) = (h0 � h(x)) =r. The omnidirectional
relief and steepness (ORS) of the reference point (p; h0) relative to the
landscape h, using f , is

ORSf (p; h0;h) = kf � uk2

=

24ZZ
R2

f2
�
h0 � h(x)

r

�
dA(x)

351=2

Before examining the general properties of ORS, we �rst derive the correct
function f based on our normalization.

Proposition 4 Let f : R! R be di¤erentiable and assume that f(u) = o(u1+")
for some " > 0, as u! 0. Let h0; b > 0 and let c be the associated cone function,
with slope s = h0=b. Then ORSf (0; 0; h0; c) = h0F (s); where F satis�es the
initial value problem

1

�

�
F 2(s)

�0
=
1

s2
�
f2(s)

�0
; F (0) = 0:

5Note that ORS ignores line-of-sight issues: we make no distinction between points that
are actually in view from the reference point and points that are obscured by intervening
terrain. Hence phrases such as "looking up at the mountain" should not be taken too literally.

6 It is not absolutely necessary to require that f vanish for negative u. It has the e¤ect
of ignoring surrounding higher terrain in evaluating the reference point. This usually has a
negligible e¤ect when the reference point is a summit, which is our main application. Dropping
this requirement turns out to make the reduced version of ORS, discussed at the end of this
paper, di¢ cult to de�ne.
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Proof. De�ning F as in the theorem, we have

h0F (s) =

0@ZZ
R2

f2
�
h0 � c(r)

r

�
dA

1A1=2

h20F
2(s) = 2�

Z 1

0

f2
�
h0 � c(r)

r

�
r dr:

1

2�
h20F

2(s) =

Z b

0

f2 (s) r dr +

Z 1

b

f2
�
h0
r

�
r dr

=
1

2
f2 (s) b2 +

Z s

0

f2 (u)
h20
u3
du

where we have set u = h0=r and hence du = �
�
h0=r

2
�
dr or r dr = �

�
r3=h0

�
du =

�
�
h20=u

3
�
du. Note that the order of vanishing assumed for f makes all the

integrals converge. Hence

1

2�
h20F

2(s) =
1

2
f2(s)

h20
s2
+

Z s

0

f2(u)
h20
u3
du

1

2�
F 2(s) =

1

2s2
f2(s) +

Z s

0

f2(u)
du

u3

Integration by parts yields

1

2�
F 2(s) =

1

2s2
f2(s)� 1

2s2
f2(s)

+ lim
u!0

f2(u)

2u2
+
1

2

Z s

0

�
f2(u)

�0 du
u2

=
1

2

Z s

0

�
f2(u)

�0 du
u2

or, taking the derivative of both sides,

1

�

�
F 2(s)

�0
=
1

s2
�
f2(s)

�0
; F (0) = f(0) = 0:

Proposition 5 Let

f(u) =

�
4

�3
�
2u arctanu� ln

�
u2 + 1

�
� arctan2 u

��1=2
(1)

for u � 0 and f(u) = 0 for u < 0. Then the function F associated to f
by Theorem 4 is F (s) = 2

� arctan s, and hence the resulting ORSf is angle-
normalized:

ORSf (0; 0; h0; c) =
2

�
h0�.
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Figure 2: Plot of f (solid) and f2 (dashed)

Proof.

f2(s) =
1

�

Z s

0

u2
�
F 2(u)

�0
du

=
4

�3

Z s

0

u2
�
arctan2 u

�0
du

=
8

�3

Z s

0

u2

u2 + 1
arctanu du

=
8

�3

Z s

0

�
1� 1

u2 + 1

�
arctanu du

=
4

�3

�
2

Z s

0

arctanu du�
Z s

0

�
arctan2 u

�0
du

�
=

4

�3

�
2u arctanujs0 � 2

Z s

0

u

u2 + 1
du� arctan2 s

�
=

4

�3
�
2s arctan s� ln

�
s2 + 1

�
� arctan2 s

�
:

We exclusively use this angle-normalized f , shown in Figure 2, in our calcu-
lations of ORS in this paper. However we can say a word about what happens
when one chooses di¤erent functions for f . Since ORS combines information
about local relief with information about steepness, there is an issue of how much
to weight relief versus steepness: should we assign a greater value to a very steep,
but only moderately high peak, or to a moderately steep, but very high peak? At
the risk of making apples-to-oranges comparisons, we boldly proceed to assign
one number that makes a certain tradeo¤between relief and steepness. Di¤erent
choices for f will result in somewhat di¤erent tradeo¤s, either more �heightist�
(favoring relief over steepness) or more �slopist� (the opposite). In past work
we have also tried other normalizations, notably F (s) = s=(s+1), which is more
heightist than the angle normalization. We work with angle normalization for
reasons of simplicity, elegance, and a good �t with visual impressiveness.
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For the remainder of this paper, we will use the modi�ed slope integrand f
given in Theorem 5, and we will suppress f from the notation; that is, we de�ne

ORS(p; h0;h) = ORSf (p; h0;h)

With this de�nition, ORS has many good properties, including strong ver-
sions of continuity, which are essential for dealing with the discretized data
encountered in practice.7 Note that the square root in the de�nition is an
order-preserving function; hence for the purposes of comparing peaks (one of
our main uses for ORS), it is enough to use ORS2, which will be simpler to
analyze. One can think of the square root serving mainly to make normaliza-
tion easier (in particular, it produces a quantity with units of length). The root
does make it tricky to analyze the behavior of ORS for landscapes where ORS
is very small. This is not a major concern for our purposes, since we focus
primarily on reference points for which ORS is relatively large. Also, taking the
square root halves relative error, so any relative error result for ORS2 yields a
corresponding, and stronger, relative error result for ORS.

Proposition 6 The functional ORS : R2�R�L1
�
R2
�
! R has the following

properties:

1. ORS is weakly increasing as a function of h0 and weakly decreasing as a
function of h: for every p 2 R2, h0; k0 2 R, and h; k 2 L1, if h0 � k0
and h � k, then ORS(p; h0;h) � ORS(p; k0; k).

2. ORS is bounded by the maximum height of the landscape: for every p 2 R2,
h0 2 R, and h 2 L1, ORS(p; h0;h) � kh0 � hk1. In particular, it is
�nite for any bounded landscape and any reference point.

3. ORS is invariant under vertical translation and horizontal translation: for
every p 2 R2, h0 2 R, h 2 L1, a 2 R, and q 2 R2,

ORS(p; h0 + a;h+ a) = ORS(p; h0;h)

ORS(p+ q; h0;h(x� q) = ORS(p; h0;h)

4. ORS is invariant under re�ections and rotations about the reference point:
let A be a 2 by 2 orthogonal matrix and de�ne hA(x) = h(A (x� p) +p).
Then

ORS(p; h0;hA) = ORS(p; h0;h)

5. ORSf is scale-covariant (if we scale the landscape both horizontally and
vertically), and in particular it has units of length. That is, if hM is
obtained from h by dilating horizontally about the point p by M > 0 and
scaling vertically by M (i.e. hM (x) =M � h ((x� p) =M + p)) then

ORS(p;Mh0;hM ) =M �ORS(p; h0;h)
7 In particular, the Lipschitz continuity in Corollary 13 would not hold if we used a 1-norm

instead of a 2-norm, which might otherwise seem simpler.
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Proof. Monotonicity (1) and vertical and horizontal translation invariance (3)
are clear from the de�nition. Invariance under re�ections and rotations follows
from the corresponding invariance of the integral. Scale-covariance follows from
the change of variables indicated in item 5. The bound given in item 2 follows
from monotonicity and the �agpole case of the cone normalization; hence we
will refer to this bound as the �agpole bound.

Remark 7 By using vertical and horizontal invariance, we can always reduce
to the case where the reference point is the origin and the reference height is zero.
We do this below for simplicity, denoting the result by ORS(h) = ORS(0; 0;h).
Note that in any statement involving a variation of the landscape h, we can
recover a more general version, with variation in h0 as well: for example, simply
replace any quantity of the form kh� kk1 by k(h0 � h)� (k0 � k)k.

Before turning to results about the continuity and robustness of ORS, we
need a lemma about the function f which appears in the de�nition. This lemma
summarizes all of the features of f that are necessary for the results about ORS
that follow.

Lemma 8 The function f de�ned in Proposition 5 is C1 on R and has the
following properties for u > 0. (Recall that f is identically zero for u � 0.)

1. f is strictly increasing.

2. f2(u) = 2
�3u

4 +O(u6).

3. f(u) =
q

2
�3 � u

2 +O(u3) as u! 0+ and f(u) � min
nq

2
�3 � u

2; 2�
p
u
o
.

4. f2 is strictly convex.

5. 0 �
�
f2
�0
(u) < 4

�2 and
�
f2
�0
(u) � 8

�3u
3.

Proof. Let u > 0. The function

f2(u) =
4

�3
�
2u arctanu� ln

�
u2 + 1

�
� arctan2 u

�
is clearly C1. Its Taylor expansion at u = 0 is

f2(u) =
4

�3

 
2u

�
u� u

3

3

�
�
�
u2 � u

4

2

�
�
�
u� u

3

3

�2!
+O(u6)

=
2

�3
u4 +O(u6)

Hence

f(u) =

r
2

�3
u4 (1 +O (u2))

=

r
2

�3
u2
�
1 +O(u2)

�
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This shows that, even with the proviso that f(u) = 0 for u < 0, f is C1 for all
u 2 R.
Next we calculate the derivative of the squared function:�

f2
�0
(u) =

8

�3
u2
arctanu

u2 + 1

(recall from Prop.4 that it is not accidental that this is relatively simple). This
is clearly positive for u > 0; hence f2 and f are both increasing (in fact, strictly
increasing as long as u > 0). (Again, this follows also from Prop. 4.) Since
arctanu < min

�
�
2 ; u
	
for u > 0, we see also that

�
f2
�0
(u) < min

�
4
�2 ;

8
�3u

3
	

for u > 0. We take the second derivative and obtain

0 <
�
f2
�00
(u) =

8

�3
u (u+ 2arctanu)

(u2 + 1)
2 <

24

�3
u2 =

d2

du2

�
2

�3
u4
�

(u > 0)

which shows that
�
f2
�
is convex, and also, since f2(0) =

�
f2
�0
(0) = 0, that

f2(u) <
2

�3
u4

and hence that

f(u) <

r
2

�3
u2

as desired.
We now consider the sensitivity of ORS and ORS2 to the landscape data h

(and hence also to the height h0 of the reference point, as in Remark 7). We
certainly want continuity, but we actually want a bit more; continuous func-
tions can have unpleasantly large derivatives. This is important when dealing
with discrete, and often somewhat inaccurate, digital data. In fact, a previous
attempt at de�ning such a function using a 1-norm instead of a 2-norm led to
poor behavior in this regard.
To quantify the sensitivity of ORS2(h) to variations in h, we recall the fol-

lowing standard notion from functional analysis.[3]

De�nition 9 Given a function F : V ! W between two topological vector
spaces, the Gâteaux di¤erential of F is the function dF given by

dF (h; v) =
d

dt

����
t=0

F (h+ tv)

F is said to be Gâteaux di¤erentiable at h 2 V if dF exists for all v 2 V .

In general, dF need not be continuous or linear. In our case, we are most
interested in the following. Suppose that V and W are Banach spaces, and that
F is Gâteaux di¤erentiable at h. Then de�ne

mF (h) = sup
kvk=1

kdF (h; v)k

9



(which may be in�nite). If F is actually (Fréchet) di¤erentiable at h, this is
clearly just the norm of the derivative, as a linear operator between Banach
spaces. It measures the worst-case sensitivity of F at h. We are interested in a
simpler quantity, namely

MF (H) = sup
khk=H

mF (h) = sup
khk=H

sup
kvk=1

kdF (h; v)k

which gives the worst-case sensitivity of F over all inputs of given norm H.
We are interested in the case where V = L1 and W = R. For example, if
F (h) = khk21, a simple calculation yields MF (H) = 2H. With this notation,
we can state our main result about the sensitivity of ORS.

Theorem 10 The worst-case sensitivity of ORS2 satis�es

MORS2(H) = 2H

That is, it is exactly as sensitive, in the worst case, as the function H2. For
ORS itself, we have

mORS(h) � khk1
ORS(h)

Before proving the theorem, we �rst note the following easy consequence of
monotonicity, whose proof we omit.

Lemma 11 Let H > 0 be �xed and consider all pairs of landscapes h; k 2 L1,
with kh� kk1 = H. Then

��ORS2(h)�ORS2(k)�� is maximized when h� k is a
constant function (a.e.).

Proof of the Theorem. Let h 2 L1. By the lemma, to calculate mORS(h),
we need only consider the case where v is constant function; let�s say v = z
everywhere. So

mORS(h) =
d

dz

����
z=0

ORS2f (h+ z)

=
d

dz

����
z=0

Z
R2
f2
�
h(x) + z

r

�
dA

=

Z
R2

@

@z

����
z=0

�
f2
�
h(x) + z

r

��
dA

=

Z
R2

�
f2
�0�h(x)

r

�
1

r
dA

where we can pass the derivative inside the integral since
�
f2
�0 �h(x)

r

�
1
r is

integrable.[4] (It is integrable near the origin since
�
f2
�0
is bounded, and at
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in�nity since
�
f2
�0
(u) � 8

�3u
3, both by Lemma 8.) Now let H > 0 and con-

sider all functions h with khk1 = H. Since
�
f2
�0
is increasing by Lemma 8,

mORS(h) will be maximized when h is a constant function, with value H. But
this reduces us to the case where h = H and v are both constant, that is, the
�agpole case, and this is normalized to give

ORS2(H) = H2

for which we have already noted that

MORS2(H) = 2H

The result about ORS itself follows by the chain rule:

mORS(h) =
d

dz

����
z=0

q
ORS2(h+ z)

=
d
dz

��
z=0

ORS2(h+ z)

2
q
ORS2(h)

� MORS2(khk1)

2
q
ORS2(h)

=
khk1q
ORS2(h)

Corollary 12 The function ORS2 is locally Lipschitz continuous, and the Lip-
schitz bound depends only on khk1. More precisely, on any set S with khk1 �
H for all h 2 S, ��ORS2 (h0)�ORS2 (h1)�� � 2H
for all h0; h1 in S.

Proof. For h0; h1 2 S, let ht = th1 + (1� t)h0. The corollary follows from the
mean value theorem applied to the function t 7! ORS2 (ht), since the preceding
theorem implies that the derivative of this function is bounded by 2H.

Corollary 13 The function ORS is continuous, and it is locally Lipschitz con-
tinuous away from the zero (a.e.) landscape. Further, on a set S on which ORS
is bounded away from zero, ORS is uniformly Lipschitz continuous.

Proof. ORS is continuous since ORS2 is. If h is not the zero landscape, then
ORS (h) 6= 0, and by continuity, there is a neighborhood around h where ORS is
bounded away from zero. Hence a mean value theorem argument as in the last
corollary, using the bound on mORS (h) in the theorem, yields local Lipschitz
continuity. If ORS is bounded away from zero a priori, then the same argument
gives a uniform Lipschitz constant.
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Remark 14 Even for landscapes with small ORS values, ORS tends to be
better-behaved than this corollary would indicate, but the result given is sat-
isfactory for our purposes.

While the previous theorem and its corollaries address the sensitivity of ORS
to an arbitrary bounded change in the landscape, we get a sharper result if the
change in the landscape occurs only far away from the reference point. This is
important to the interpretation of ORS as a measure of local impressiveness,
without regard to absolute elevation above the level of a distant ocean. As
before, it is simpler to discuss ORS2.

Theorem 15 (Locality) ORS2 is local: the contribution I to ORS2(h) from
points x with kxk > R satis�es

I � 2 khk41
�2R2

:

Hence for every h; k 2 L1, if h(x) = k(x) for all x with kxk � R, and
khk1 ; kkk1 � H, then

��ORS2(h)�ORS2(k)�� � 2H4

�2R2

Proof. Let E =
�
x 2 R2 : kxk � R

	
. Then

I =

Z
E

f2(h(x)=r) dA

� 2

�3

Z
E

�
h(x)

r

�4
dA

=
2

�3

Z 2�

0

Z 1

R

�
h(x)

r

�4
rdrd�

� 4

�2

Z 1

R

khk41
r3

dr

� 2 khk41
�2R2

We noted above that in the case of a low-slope cone, ORS is approximately
quadratic in the height (for a �xed base radius) This is true in general as long
as the slopes near the reference point are bounded.

Theorem 16 For terrain that has bounded slope near the origin, ORS(h) ap-
proximately scales quadratically in the height (with no horizontal scaling). More
precisely, assume that h(x)=r is bounded and let M > 0. Then

ORS(Mh) = CM2 +O(M4)

as M ! 0, for some C depending on h.
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Proof. Let u(x) = �h(x)=r and let H = khk1. Then the corresponding slope
function for the (vertically) scaled landscape is Mu, and

ORS2(Mh) =

Z
R2
f2(Mu(x)) dA

=

Z
R2

�
2

�3
M4u(x)4 + g (Mu(x))

�
dA

=
2

�3
M4

Z
R2
u(x)4 dA+

Z
R2
g (Mu(x)) dA

where jg(u)j � C1u6 for all u. Hence����ORS2(Mh)� 2

�3
M4

Z
R2
u(x)4 dA

���� �
����Z
R2
g (Mu(x)) dA

����
�

Z
R2
jg (Mu(x))j dA

�
Z
R2
C1M

6u(x)6 dA

Since h is bounded, u decays at least as 1=r at in�nity, and it is assumed to be
bounded at the origin. HenceZ

R2
u(x)n dA <1 for n � 3

We can apply this for n = 4 to the expression above to see that

C2 =
2

�3

Z
R2
u(x)4 dA

is �nite. Applying the case n = 6 gives��ORS2(Mh)� C2M4
�� � C3M6

where C3 = C1
R
R2 u(x)

6 dA. Therefore

ORS2(Mh) = C2M
4 +O(M6)

and
ORS(Mh) = CM2 +O(M4)

as desired, where C =
p
C2.

To state the next result, we return to considering ORS as a function of p, h0,
and h. We look at how ORS depends on the horizontal location of the reference
point, if we do not change its height. (This is a little strange physically, as the
reference point is usually at ground level; we will address this immediately after
the theorem.)

13



Theorem 17 Let H > 0 be �xed. Then ORS2 and ORS are continuous in p,
uniformly in p, h0, and h, provided that kh0 � hk1 � H.

We �rst need a lemma regarding f2 (h=r).

Lemma 18 Given r1; r2 with 0 < r1 < r2, f2(h=r1)�f2(h=r2) is an increasing
function of h for h � 0.

Proof. We have

d

dh

�
f2
�
h

r1

�
� f2

�
h

r2

��
=

�
f2
�0� h

r1

�
1

r1
�
�
f2
�0� h

r2

�
1

r2

>
1

r1

��
f2
�0� h

r1

�
�
�
f2
�0� h

r2

��
> 0

since f2 is convex.
Proof of the Theorem. We wish to bound

��ORS2 (q; h0;h)�ORS2 (p; h0;h)��
for q near p. Without loss of generality, we can let p be the origin, h0 = 0, and
q = (�; 0), for some � > 0, and we can look at the case where ORS2 (q; h0;h) �
ORS2 (p; h0;h). We have

ORS2 (q; 0;h)�ORS2 (0; 0;h) �
Z
R2

�
f2
�

h(x)

kx� qk

�
� f2

�
h(x)

r

��
dA

=

Z 1

�
2

Z 1

�1

�
f2
�

h(x)

kx� qk

�
� f2

�
h(x)

r

��
dy dx

+

Z �
2

�1

Z 1

�1

�
f2
�

h(x)

kx� qk

�
� f2

�
h(x)

r

��
dy dx

�
Z 1

�
2

Z 1

�1

�
f2
�

h(x)

kx� qk

�
� f2

�
h(x)

r

��
dy dx

where the second integral drops out because kx� qk > r on that region and
f2 (h=r) is a decreasing function of r. Also, by the previous lemma, the di¤erence
between the f2 values at a particular x will be maximized when h(x) is as large
as possible, so we have

ORS2 (�; 0; 0;h)�ORS2 (0; 0; 0;h) �
Z 1

�
2

Z 1

�1

�
f2
�

H

kx� qk

�
� f2

�
H

r

��
dy dx

=

Z 1

� �
2

Z 1

�1
f2
�
H

r

�
dy du�

Z 1

�
2

Z 1

�1
f2
�
H

r

�
dy dx

=

Z �
2

� �
2

Z 1

�1
f2
�
H

r

�
dy dx

(where the �rst equality follows from the change of variables u = x� �), which
is exactly ORS2 applied to an in�nitely long, thin �mesa�of constant height H.
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This in turn can be estimated as follows, using Lemma 8:Z �
2

� �
2

Z 1

�1
f2
�
H

r

�
dy dx =

Z �
2

� �
2

Z �
2

� �
2

f2
�
H

r

�
dy dx

+2

Z �
2

� �
2

Z H

�
2

f2
�
H

r

�
dy dx

+2

Z �
2

� �
2

Z 1

H

f2
�
H

r

�
dy dx

� 2�

Z p
2
2 �

0

f2
�
H

r

�
r dr

+2�

Z H

�
2

f2
�
H

y

�
dy

+2�

Z 1

H

f2
�
H

y

�
dy

� 2� � 4
�2
H �

p
2

2
�

+2� � 4
�
�H � ln

�
2H

�

�
+2� � 2

�3
� H
3

Hence we have

ORS2 (�; 0; 0;h)�ORS2 (0; 0; 0;h)! 0 as � ! 0 (with H �xed)

so ORS2 and ORS are continuous in p. Since the bound we derived only depends
on H, and not on p, h; or h0, the continuity is uniform as desired.
(Note: if we put a bound on the slope of h near p, this can be sharpened to

yield Lipschitz continuity.)
We are usually interested in the case where h0 = h(p), yielding the function

(with h �xed and p variable) ORS(p; h(p);h). Note that in general (when h is
not continuous) we do not expect this function of p to be continuous, since the
reference height follows the discontinuous function h. However, wherever h is
continuous, Theorem 17 and Corollary 13 together imply that ORS(p; h(p);h)
will also be continuous.

3 Examples

To get a feel for the meaning of ORS, it is most instructive to look at explicit
examples, preferably with pictures. Below we display a sample cross-section for
a few representative peaks. In addition, the website [5] and viewing packages
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Table 2: El Capitan (left) and Mount Lyell (right) pro�les

such as Google Earth8 are very useful. All of the ORS values for the examples
were generated by computer, using gridded digital elevation models (DEMs).9

First let us dispatch our introductory contrasting examples, Mount Elbert
and Devils Thumb. Mount Elbert has an ORS of 237 meters, while Devils
Thumb�s is 828 meters, corresponding to their dramatically di¤erent pro�les
as shown in Table 1. These values show that a comparison between these two
peaks based on ORS gives the opposite result from the comparison suggested
by their absolute elevations.
Another illustrative contrast is provided by Yosemite National Park. The

highest point in the park is Mount Lyell, at 3999 meters. It has a respectable
ORS value of 200 meters. See Table 2. However, far more famous is the huge
granite cli¤ on the side of Yosemite Valley known as El Capitan. It is hardly
a mountain at all (there is higher terrain quite nearby), and its �summit� (a
minor knoll some distance back from the brow of the cli¤) has an elevation of
only 2307 meters. El Capitan is a good example of a feature whose maximum
ORS value is not obtained at the �summit�(local maximum of height). Rather,
it is obtained by placing the reference point just atop the steepest portion of
the cli¤. The resulting ORS value is 575 meters. See Table 2. (The similarly
famous and impressive Half Dome nearby gets an ORS of 580 meters; these are
easily the two best ORS values in the park, and in the whole Sierra Nevada.)
Here ORS clearly correlates much better with the notability of the features than
does absolute elevation.
Table 3 lists the six U.S. states with the highest maximum ORS value. Not

suprisingly, Alaska tops the list, although Mount McKinley (ORS = 1243 m,
Elev = 6194 m) is not the best point in Alaska. The lower Mount Saint Elias is
very close to tidewater (about 10 km away) , and is comparably steep, so it gets
a higher ORS value. Most of the other peaks are well-known, except perhaps
Mount Cleveland, the high point of Glacier National Park. (The glaciers there

8However note that, as of 2010, in some regions (typically non-U.S. regions with high
relief), the dataset that underlies Google Earth is still of varying, and sometimes strikingly
low, quality.

9The typical accuracy of the ORS values presented in this section is a few percent. More
details on the calculations can be found on the peaklist website.[5]
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Peak ORS Elev State
Mount Saint Elias 1334 5489 Alaska
Mount Rainier 827 4392 Washington
Grand Teton 683 4197 Wyoming
Mount Shasta 675 4317 California
Mount Cleveland 672 3190 Montana
Mount Hood 649 3452 Oregon

Table 3: State best points by ORS

Peak ORS Elev State
Nanga Parbat 1740 8125 Pakistan
Dhaulagiri 1680 8167 Nepal
Rakaposhi 1628 7788 Pakistan
Machhapuchhare 1596 6993 Nepal
Manaslu 1550 8163 Nepal

Table 4: World�s top �ve independent peaks by ORS

are fast disappearing, but they have carved a number of exceptionally steep
peaks.) It is interesting to also compare Mount Whitney, the high point of the
contiguous U.S. (ORS = 418 m, Elev = 4421 m); note that it is bested within
California not only by the huge stratovolcano Mount Shasta, but also by El
Capitan and Half Dome (among others).
Worldwide, we have Table 4, which lists the top �ve independent10 peaks in

the world. Four are in the Himalaya, while Rakaposhi is in the nearby Karako-
ram range. While three of these peaks are in the famed group of fourteen
�eight-thousanders� (with elevation over 8000 meters), two are not; in fact
Machhapuchhare is not even in the top 300 peaks in the world by elevation.
(It is a tremendously steep peak, near low terrain, in the Annapurna region of
Nepal; it is highly sacred and is o¤-limits to climbing.) For comparison, Mount
Everest, elevation 8848 m, gets a very respectable ORS value of 1302 m. Also
note the dramatic di¤erence in scale between these peaks and peaks in the con-
tiguous U.S. (Mount Saint Elias does, however, come close to the top �ve, and
actually beats Everest.)

4 Derived concepts

We have created two main concepts derived from ORS: reduced ORS (RORS)
and domain relief and steepness (DRS). We will discuss both brie�y, without
proofs.

10This list was actually generated by taking the �ve highest points as ranked by reduced
ORS, as in Section 4, to ensure �ve truly independent peaks.
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RORS is used for building a list of the �best�peaks (as judged in terms of
relief and steepness) in a region. Since, for a �xed, continuous landscape function
h, ORS(p; h(p);h) is a continuous function of p, it is nonsensical to compile a
list of points with the highest possible ORS values in a given region. This is
true of height, as well; lists of the �highest N peaks� in a given region usually
use some cuto¤ criterion to eliminate trivial subpeaks. Instead of pursuing this
strategy, we created RORS, which is a variant of ORS which takes into account
the degree of independence of a given peak from nearby �better�peaks.11 Hence
it measures a combination of relief, steepness, and independence. For details,
we refer the reader to [5], but we can brie�y note the most important feature
of RORS. It is automatically discrete: for any " > 0, the set of points p with
RORS(p) > " is discrete (and hence �nite, in a bounded domain). This makes
it a valid list-making criterion; the list of the top N points in a given region, as
ranked by RORS, is meaningful. Various such lists are presented on the website
[5].
The second concept derived from ORS is more straightforward to de�ne.

It is a measure of the ruggedness of a given domain, taking into account both
relief and steepness. It is easy to create such a measure using ORS: roughly,
we (RMS) average the ORS value for every point in the domain, yielding what
we call domain relief and steepness, DRS. However there are two additional
issues. First, given a bounded domain K � R2, and a landscape function h,
we rede�ne ORS to use sample points only within the given domain. Second,
instead of declaring our modi�ed slope integrand f to have f(u) = 0 for u < 0,
we extend it as an even function.12

With notation as in Section 2, we de�ne the new version of ORS, appropriate
to this setting, as

ORS(p; h0;h;K) = kf � uk2;K

=

24ZZ
K

f2
�
h0 � h (x)
kp� xk

�
dA(x)

351=2

Then we de�ne

DRS(h;K) =

24 1

A(K)

ZZ
K

ORS2(p; h(p);h;K) dA(p)

351=2

where A(K) is the area of K. This can be expressed directly in terms of the
(new) modi�ed slope integrand f as follows. Abusing notation slightly, let

11Part of the inspiration for this strategy was topographic prominence, a popular alternate
mountain measure. See for example [6].
12This change is not essential, but it does make the resulting formula more symmetric. It

is easy to verify that using the original convention for f instead results in a de�nition of DRS
that is 1=

p
2 times that given here.
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u(p;x) = (h (p)� h (x)) = kp� xk. Then

DRS(h;K) =
1p
A(K)

kf � uk2

=

24 1

A(K)

Z
K�K

f2
�
h (p)� h (x)
kp� xk

�
dA(p) dA(x)

351=2

Note that this (quadruple) integral is symmetric in the variables p and x, and
that it has units of length, just as ORS does (recall that f is dimensionless).
We will not go into detail regarding DRS here; see [5] for more. However we

will make two notes about it.
First, DRS is sensitive to the overall slope of the terrain, but it is continuous

in the L1 norm, unlike a functional based on derivatives. Hence it will not
give an unreasonably high value to a landscape with low relief, no matter how
rugged, nor will its value depend (absurdly) on a particular microscale model
of matter. (Think of applying the derivative to the surface of a ��at�, �level�
table, but taking into account the atomic-scale bumpiness of the surface� one
will not obtain the expected value of zero.)
Second, empirical investigations indicate that the following problem is well-

de�ned (with perhaps some mild regularity assumptions): within a given domain
K0, what is the domain K � K0 with maximal ruggedness? Doing this is a
tricky problem in calculus of variations, one which we have not investigated
completely. However a coarse-gridded numerical approximation to this problem
yields stable results. For example, our calculations indicate that the most rugged
region in the contiguous 48 states is the Picket Range of the North Cascades,
in Washington State.[5]
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