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This (draft) paper is a continuation of "A new topographic functional" [2],
which de�nes omnidirectional relief and steepness (ORS). Refer to that paper
for background concepts and notation.

1 Reduced ORS (RORS)

It is common to see a list of the highest N peaks in a region, for example, the top
531 peaks in Colorado, known as the "fourteeners"� the peaks exceeding 14,000
feet. However, such height-based lists must include some sort of cuto¤ criterion,
to avoid listing trivial subpeaks (or, in the logical extreme, an in�nity of points
surrounding the summit of the highest peak on the list). Some measures, notably
topographic prominence[1], need no such cuto¤; such a measure automatically
factors in the independence of a summit, meaning that no trivial subpeak will
get a high value. We created RORS to have this feature: it is a measure of a
summit�s2 independent impressiveness. In particular, we will see that its most
important property is that it is automatically discrete: for any " > 0, the set
of points p with RORS(p) > " is discrete (and hence �nite, in a bounded
domain). However, our particular de�nition of RORS involves more choices
than we made for ORS, some of which are justi�ed more on aesthetic than
mathematical grounds.
To �x ideas, consider the example of the Teton Range in Wyoming. The

highest point, and the point with the highest ORS value (ORS = 683 m), is the
summit of the Grand Teton. See the topographic map or better, view the range
in Google Earth (go to N43.74 W110.8).
If we were to make a list of the "best" points, as judged by ORS, in the

range, the summit of the Grand Teton would clearly top the list. But what
should be number two? Certainly not the second-highest boulder on the same
summit, and perhaps not even nearby peaks such as Mount Owen (just north
of the Grand Teton), which is overshadowed signi�cantly by its neighbor, and
which could reasonably be considered a subsidiary point on the same massif.
The RORS value of Mount Owen will be substantially reduced, compared to its
ORS value, by the presence of the Grand Teton nearby. One way to say this is
that, given that the Grand Teton has a high ORS value, the fact that Mount
Owen has a high ORS value does not convey that much new information, since
Mount Owen is part of the same massif. The RORS value of Mount Owen is
supposed to re�ect, roughly, the relief and steepness that it has apart from its
being a part of the Grand Teton massif.

1The exact number depends on exactly what list is used.
2Actually, RORS, like ORS, can be applied to any point on a landscape. However the

points with large RORS values tend to be (but are not always) summits.
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The number two on the RORS-ranked list for the Teton Range is in fact
Mount Moran, which is signi�cantly more independent that Mount Owen. We
present ORS and RORS numbers for selected points in the Teton Range in
Section 2.
We �rst de�ne the RORS of a reference point p0 relative to a speci�c set

of points p1; :::;pn, and a landscape function h.3 One should think of p0 as a
summit to be evaluated, and p1; :::;pn as nearby, more impressive summits. To
obtain RORS, we modify the integrand in the de�nition of ORS so that each
sample point contributes only to the extent that "viewing" p0 from x is "more
impressive" than viewing p1; :::;pn. Precisely, we set

ui(x) =
h(pi)� h(x)
kpi � xk

(i = 0; :::; n)

and
vi(x) = f(ui(x))

where

f(u) =

�
4

�3
�
2u arctanu� ln

�
u2 + 1

�
� arctan2 u

��1=2
is the modi�ed slope function used in ORS. Then for each i = 1; :::; n, v0(x) �
vi(x) is a measure of the "impressiveness" of the reference point p0 as seen
from sample point x, masked, or reduced, by the impressiveness of the point pi.
Hence a simple candidate for the new integrand is

min fmax (v0(x)� vi(x); 0)g : i = 1; :::; n

Note that taking the max with zero prevents negative contributions; once a
nearby peak has stolen all of a certain sample point�s contribution to RORS(p0),
it can�t do any more damage. Similarly, using min (instead of, for example,
subtracting the sum of the vi) lets only the most signi�cant detractor act at each
sample point. These are choices we make on empirical and practical grounds;
one could use other conventions.
We actually perform one more modi�cation on the functions vi before collect-

ing them to build the RORS integrand. To explain this, consider two scenarios.
In the �rst, p0 lies directly between the sample point x and a better peak p1;
one can think, for example, of p0 as a subpeak on a ridge of p1, with the sample
point at the base of the ridge. In the second scenario, p0 and p1 are diamet-
rically opposed as viewed from x; for example, they could be on opposite sides
of a valley, with the sample point on the valley �oor. In the latter scenario, it
is plausible to consider p0 as more independent of p1 than it is in the former,
due to the relative position of the two peaks as viewed from the sample point.
You can see these two scenarios in the Swiss Alps in Google Earth: Scenario 1,
Scenario 2. To distinguish these situations, we introduce an angle weighting, as

3 In the remainder of the paper we will always use h(p) as the reference height for a reference
point p.
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follows. For i = 1; :::; n, we let �i(x) be the angle between the rays
��!xp0 and��!xpi, and we let

wi(x) =
1

2
(1 + cos�i (x)) = cos

2

�
�i (x)

2

�
Note that wi varies from 1, in the ridge scenario, down to 0, in the valley
scenario. We then de�ne the RORS integrand g to be

g(x) = min fmax(v0(x)� wi(x)vi(x); 0) : i = 1; :::; ng

and we de�ne4

RORS(p0;p1; :::;pn;h) = kgk2

=

24Z
R2

g(x) dA(x)

351=2

This gives a notion of the "impressiveness" of a point as reduced by a speci�c
list of other points. To make a "best" list for a region, one then follows the
following procedure to obtain an absolute (not relative) version of RORS. The
�rst point on the list, say p1 is the maximum of ORS for the region. The second
point is the point whose RORS, relative to p1, is maximum. The third is the

4We use single integral signs throughout this paper, in contrast to our use of double integrals
for subsets of R2 in the previous paper. This is to avoid cumbersome quadruple integral
notation for DRS.
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point whose RORS, relative to p0;p1, is maximum, and so on. This yields a
list with the property that the nth entry is the best among all points considered
relative to the points above it on the list.
However, if done by the letter, this procedure is obviously cumbersome,

especially if we want a long list of best peaks. However, it is easy to make
approximations and simpli�cations that reduce the time required to compute
RORS signi�cantly. First, since RORS � ORS, one need not consider points
that do not have a relatively high ORS value. Second, since the e¤ect of re-
duction falls o¤ relatively quickly with distance, one need not include far-away
peaks as potential reducers. Third, reducing by many points almost never pro-
duces much more reduction than reducing by the most "powerful" (usually the
closest) two or three reducing points.
Nonetheless, calculating the top 50 points by RORS in a U.S. state, for

example, is a compute-intensive process. It is also somewhat sensitive to small
errors in the data, but that is unavoidable for a measure of this type� RORS
is a "winner-take-all" measure, where two peaks that are close to being tied
(and close physically to each other) can get forcibly separated on the list, with
one being declared the winner, and the other getting drastically reduced by the
winner. It is easy to show that any measure that is automatically discrete will
have this property, so this type of sensitivity is unavoidable. (Recall that ORS,
on the other hand, is continuous in the input data, and in the cases of interest
to us, even Lipschitz. But it is certainly not automatically discrete� it serves a
di¤erent purpose from RORS.)

2 Examples of RORS calculations

We will present a number of examples of RORS calculations in a later draft of
this paper. At this point we refer the reader to our lists on the Peaklist website.

3 Domain Relief and Steepness (DRS)

First we recall from [2] the de�nition of DRS of a region. Roughly, it is the
RMS average of the ORS value for every point in the domain. But note two
modi�cations: �rst, given a bounded domain K � R2, and a landscape function
h, we rede�ne ORS to use sample points only within the given domain. Second,
instead of declaring our modi�ed slope integrand f to have f(u) = 0 for u < 0,
we extend it as an even function.5

5This change is not essential, but it does make the resulting formula more symmetric. It
is easy to verify that using the original convention for f instead results in a de�nition of DRS
that is 1=

p
2 times that given here.
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Hence, with notation as in Section ?? of [2], we de�ne the new version of
ORS, appropriate to this setting, as

ORS(p; h0;h;K) = kf � uk2;K

=

24Z
K

f2
�
h0 � h (x)
kp� xk

�
dA(x)

351=2

and we de�ne

DRS(h;K) =

24 1

A(K)

Z
K

ORS2(p; h(p);h;K) dA(p)

351=2

where A(K) is the area of K. (If A(K) = 0 we de�ne DRS(h;K) = 0; we
will justify this below.) This can be expressed directly in terms of the (new)
modi�ed slope integrand f as follows. Abusing notation slightly, let u(p;x) =
(h (p)� h (x)) = kp� xk. Then

DRS(h;K) =
1p
A(K)

kf � uk2;K

=

24 1

A(K)

Z
K�K

f2
�
h (p)� h (x)
kp� xk

�
dA(p) dA(x)

351=2

Note that this (quadruple) integral is symmetric in the variables p and x, and
that it has units of length, just as ORS does (recall that f is dimensionless).
Now we turn to results that go further than what we had in [2], but are not

yet optimal.
First, we note that DRS satis�es obvious scaling and invariance properties

akin to those satis�ed by ORS. We won�t write them down explicitly. Next, we
want to give a simple property of DRS which clari�es exactly how much it is like,
and how much it is unlike, and ordinary RMS average. The di¤erence comes
from taking sample points only from the region K. For an ordinary average,
the following inequality would be an equality.

Lemma 1 Let the landscape function h be �xed and suppose K = K1[K2 with
K1;K2 disjoint. Then

DRS2 (h;K) � A(K1)DRS
2 (h;K1) +A (K2)DRS

2 (h;K2)

A(K)
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Proof. Let g(K) = A(K)DRS2 (h;K). Then

g(K) =

Z
K�K

f2 (u (p;x)) dA(p) dA(x)

=

Z
K1�K1

f2 (u (p;x)) dA(p) dA(x)

+

Z
K2�K2

f2 (u (p;x)) dA(p) dA(x)

+2

Z
K1�K2

f2 (u (p;x)) dA(p) dA(x)

� g(K1) + g (K2)

which is what we wanted to show.
We refer to this property as the "superadditivity" of DRS (although more

properly it is g which is superadditive).

Proposition 2 DRS is continuous as a function of h in the L1 norm.

Proof. This is clear since DRS is (the square root of) an integral of ORS2,
which is continuous in L1.
In fact, DRS is substantially better than this simple proposition indicates,

since it averages out the variation in ORS. With mild hypotheses, it is probably
Lipschitz in h with respect to the L1 norm. In other words, a tall but skinny
feature will contribute only a small amount to DRS: We have not yet worked
out the details, however. But even L1 continuity is signi�cant, since DRS is a
measure of ruggedness, which would ordinarily be calculated with derivatives.
We can also look at continuity in the region K. We de�ne a metric on the

set of bounded measurable regions K by taking the area (Lebesgue measure) of
the symmetric di¤erence:

d (K;K 0) = m (K�K 0)

There is another way to write this metric. Let �K be the characteristic function
of K. This is in L1 exactly when K has �nite area. Then it is easy to see that

d (K;K 0) = k�K � �K0k1

In other words, taking the characteristic function embeds the set of bounded
measurable regions isometrically into L1.

Proposition 3 Fix a landscape h. Then DRS(h;K) is continuous as a function
of K with respect to the metric d.
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Proof. On the set of regions K with positive area, it is enough to show that
the function g(K) = A(K)DRS2 (h;K) is continuous. Note that in general,

d (K;K [K 0) � d (K;K 0) � d (K;K [K 0) + d (K 0;K [K 0)

Hence we can assume without loss of generality that K � K 0, and we let L =
K 0 �K. We have

g (K) =

Z
K�K

f2 (u (p;x)) dA(p) dA(x)

so

g(K 0)� g(K) =

Z
K0�K0

f2 (u (p;x)) dA(p) dA(x)�
Z

K�K

f2 (u (p;x)) dA(p) dA(x)

=

Z
L�K

f2 (u (p;x)) dA(p) dA(x) +

Z
K�L

f2 (u (p;x)) dA(p) dA(x)

+

Z
L�L

f2 (u (p;x)) dA(p) dA(x)

� 2

Z
L

ORS2(p; h(p);h;K) dA(p) +

Z
L

ORS2(p; h(p);h; L) dA(p)

� 2

Z
L

ORS2(p; h(p);h) dA(p) +

Z
L

ORS2(p; h(p);h) dA(p)

� 3A(L) khk21
= 3d (K;K 0) khk21

using the �agpole bound on ORS. Hence g is actually Lipschitz, and DRS is
continuous.
Now we just need to show that as K shrinks to zero area, its DRS value (not

just g(K)) goes to zero. We have

DRS2(h;K) =
1

A(K)

Z
K�K

f2 (u (p;x)) dA(p) dA(x)

� 4

�2A(K)

Z
K�K

ju (p;x)j dA(p) dA(x)

� 4

�2
sup
x2K

Z
K

ju (p;x)j dA(p)
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Now, in polar coordinates centered at x,

ju (p;x)j =
jh (p)� h (x)j
kp� xk

=
jh (p)� h (x)j

r

� 2
khk1
r

(a.e.) Hence we need to bound Z
K

1

r
dA(p)

which, for a �xed area A(K) = k, is clearly maximized in the case where K is
a disc of radius a =

p
k=� centered at x, in which case

Z
K

1

r
dA(p) =

Z 2�

0

Z pk=�
0

dr d�

= 2
p
�k

and this is independent of x, so

DRS2(h;K) � 16

�2
khk1

p
�A (K)

which clearly shows continuity as A(K)! 0.
We now look at some optimization problems for DRS:
Problem 1: Given a �xed landscape h and a set K0, �nd a subset K � K0

which maximizes DRS (h;K).
Problem 2: Given a �xed landscape h, a set K0, and k > 0, �nd a subset

K � K0 which maximizes DRS (h;K) subject to the constraint A(K) = k.
Problem 1 is a little more natural than Problem 2, since it lacks the area

parameter. Note that the fact that DRS (h;K) ! 0 as A(K) ! 0 means that
this problem will avoid a simple pathology that found be found in most problems
of the form "�nd the region with the greatest average X"� usually, a search for
such a region will simply converge on the maximum of X on the region. The
superadditivity of DRS avoids such a pathology� a small region will always have
a small DRS simply because it includes very few sample points. However in our
numerical calculations for real-world landscapes, the optimal region does tend
to be fairly small� not surprisingly, the horizontal scale of the optimal region
approaches (in order of magnitude, at least) the vertical scale. So it can be a
single massif or a small, particularly rugged subrange of a larger range. We will
discuss particular examples below.
However, beyond this simple, avoided pathology, there is a much larger prob-

lem of whether a minimizing region exists at all, even in Problem 2, with a �xed

8



area. It is unclear whether, without further assumptions on K or h, we will get
a sequence of progressively better regions which has no limit (in an appropriate
topology). This is of course a classic situation in the calculus of variations, and
we have not yet investigated this problem thoroughly. We can lay out a modi�ed
problem:
Problem 3: Given a �xed landcape h, in some class C � L1, a class K of

allowed regions, and a set K0 2 K, �nd a subset K � K0, with K 2 K, which
maximizes DRS (h;K).
We hope that the classes C and K need not be too restrictive to guarantee a

solution. Two examples of our vague thinking along these lines:
Questions: (1) If h is smooth (say C1) then can we guarantee a solution

to Problem 3, with no a priori restriction on K? Will the optimal K have a
relatively nice boundary? Must we make explicit assumptions about the niceness
of the set of critical points of h? (2) For an arbitrary h 2 L1, if we require K
to be convex, can we guarantee a solution to Problem 3?
Note that even if one or both of these questions has a positive answer, nei-

ther is particularly satisfactory, since both restrictions are rather severe for our
setting. Mountain ranges have vertical cli¤s, so h is typically not even continu-
ous (although it usually isn�t a horribly discontinuous function, so perhaps some
sort of piecewise smoothness is an appropriate assumption). And the shape one
would expect to get "naturally" (without a priori restriction on K) for a maxi-
mizer would not usually be convex (picture the contours of a mountain range).
But both questions are reasonable starting points, about which we have though
a bit� but we�re not yet willing to write anything down.
However, turning from the pure approach to a more applied, numerical ap-

proach, we see no signs of any major practical obstacle to solving (approxi-
mately) Problems 1 and 2. Coarse-gridded numerical approximations to this
problem yield stable results. For example, our calculations indicate that the
most rugged region in the contiguous 48 states is the Picket Range of the North
Cascades, in Washington State.[3] (And no, the optimal regions don�t tend to
be convex, or even always connected.)
We won�t go into the details of the calculations here (at least for this draft)

but we will mention one practical note about how we actually proceed with
Problem 2. We actually consider a slightly more general form of DRS, namely

DRSq(h;K) =

24 1

A(K)q

Z
K

ORS2(p; h(p);h;K) dA(p)

351=2

Note that the ordinary case is when q = 1, and if q = 0 then we get the "total"
L2 norm, instead of the "average". So clearly the analog of Problem 1 is silly
for the case q = 0, as the optimal region will always be all of K0. But for
0 < q < 1, the analog of Problem 1 is just as well-de�ned as it is for q = 1, and
it will tend to give larger and larger optimal regions as q decreases. It is not
much harder to see that adjusting q gives an alternate parametrization to using
A(K) for problem 2. This has proved convenient, as it avoids having to deal
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with the �xed-area constraint in that problem. So in our calculations presented
on the peaklist.org website, we have actually looked for overall maximizers of
DRSq for various q, to indirectly solve Problem 2.
It may also very well be the case that some DRSq with q 6= 1 is of as much

or more interest in its own right than DRS = DRS1. It has an extra arbitrary
parameter, and we see no clear reason to pick some paricular q 6= 1, which is
why we prefer DRS1. But further investigation may make us prefer some other
choice of q.
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